edexcel :\#\#

Mark Scheme (Results)
Summer 2013

International GCSE Further Pure Mathematics Paper 1 (4PMO/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG037141
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks. Can only be awarded if the relevant method mark(s) has (have) been gained.
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission
- No working

If no working is shown then correct answers may score full marks.
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated always check the working and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread which does not significantly simplify the question loses two A (or B) marks on that question, but can still gain all the M marks. Mark all work on follow through but enter $A 0$ (or $B 0$) for the first two A or B marks gained.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there are multiple attempts shown, then all attempts should be marked and the highest score on a single attempt should be awarded.
In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

- Follow through marks

Follow through marks which involve a single stage of calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

- Ignore subsequent working

It is appropriate to ignore subsequent working when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent working when the additional work essentially shows that the candidate did not understand the demand of the question.

- Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).
Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=$

2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $\mathrm{x}=\ldots$
Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1.
2. Integration:

Power of at least one term increased by 1.
Use of a formula:
Generally, the method mark is gained by either quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values or, where the formula is not quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:
The rubric states "Without sufficient working, correct answers may be awarded no marks". General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show....")

Exact answers:
When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question) Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Question Number	Scheme			Marks
1.	(a) $\begin{aligned} & 126=\frac{1}{2} 12^{2} \theta \\ & \theta=\frac{126}{72}=1 \frac{3}{4} \\ & l=12 \times \frac{7}{4} \\ & =21(\mathrm{~cm}) \end{aligned}$ Method (d) i	(b) or $\begin{aligned} & 126=\frac{1}{2} \times 12 \times l \\ & l=\frac{126}{6} \end{aligned}$	(c) $\begin{aligned} & \frac{\theta}{360} \times \pi \times 12^{2}=126 \\ & \theta=\frac{126 \times 360}{144 \pi}=100.27^{\circ} \\ & l=\frac{100.27}{360} \times 2 \pi \times 12=\frac{126 \times 24}{144} \end{aligned}$	$\begin{align*} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \tag{4} \end{align*}$
Notes				
Question 1 Method (a) and (c) M1 for an expression in either degrees or radians using $A=126$ to find angle θ A1 for a fully correct expression with correct numerical values M1 for an expression in either degrees or radians with their θ to find arc length $A B$ A1 $\quad \mathrm{AB}=21(\mathrm{~cm})$ cso Method (b)				
M1 for a correct formula $\frac{1}{2} r l$				
A1 for correct substitution of the value of $r,(=12)$				
M1 for equating their formula to $126 \mathrm{~cm}^{2}$				
A1 $\quad=21(\mathrm{~cm})$ cso				
Method (d)				
M1 for	an area of a c	ded by 126		
A1 f	using $r=12$			
	the length of ue for r of 12	mference of the	divided by their value of the sc	factor using a
A1 for	21 (cm) cso			
	te: Correct sol	y seen - award	arks Allow 21.0 (cm)	

Question Number	Scheme	Marks
2.	$\begin{align*} & 3\left(x^{2}+2 x+1\right)<9-x \\ & 3 x^{2}+7 x-6<0 \\ & (3 x-2)(x+3)<0 \\ & -3<x<\frac{2}{3} \tag{4} \end{align*}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
Notes		
Question 2		
	obtaining a 3TQ equation or expression $(=0$ not required for this attempting to find their critical values as far as $x=\ldots$ (We are tre choosing the inside region for their critical values. for $-3<x<\frac{2}{3}$. Accept $-3<x$ and $x<\frac{2}{3}$ and $-3<x \cap x<\frac{2}{3}$ not accept $-3<x$ or $x<\frac{2}{3}$, or $-3<x, x<\frac{2}{3}$. These are all A0 of \leq loses the final A mark	an M mark)

Question Number	Scheme	Marks	
3.	(a) $a=-3$	$b=1$	B1 B1
	(b) at (1,0)	$0=1+\frac{c}{1-3}$	M1
		$-1=\frac{c}{-2} \quad c=2$	
	at (0, $d)$	$d=1+\frac{2}{-3}$	
		$d=\frac{1}{3}$	A1
		M1	

Notes

Question 3

(a)

B1 for either a or b
B1 for both a and b
M1 for substituting in $y=0$ and $x=1$ into the equation of the curve. a need not be substituted for this mark
(b)

A1 for $c=2$ cso
M1 for substituting $x=0$ and $y=\mathrm{d}$ into the equation of the curve to find d. Neither c nor a need to be substituted for this mark.
A1 $\quad d=\frac{1}{3}$ cso.

Question Number	Scheme	Marks
5.	$V=500 \Rightarrow 4 h^{3}=500$ $\Rightarrow h=5$	M1
	$\frac{\mathrm{d} V}{\mathrm{~d} h}=12 h^{2}$ $\frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{12 h^{2}} \times 36$ $=\frac{36}{12 \times 5^{2}}=\frac{3}{25}=0.12 \mathrm{~cm} / \mathrm{s}$	M1 A1
		M1

Notes

Question 5

Note: Parts of the question can be found anywhere in their working on the page
M1 for $V=500 \Rightarrow 4 h^{3}=500$
A1 $h=5$ cso
M1 for differentiating $V=4 h^{3}$ (usual rules apply)
A1 for $\frac{d V}{d h}=12 h^{2}$ cso
M1 for applying chain rule to find an expression for $\frac{d h}{d t}=\frac{d h}{d V} \times \frac{d V}{d t}$ or any correct arrangement (expression is sufficient - substitution of values is not required for this mark)
M1 for substituting values into their $\frac{d h}{d t}$
A1 for $\frac{d h}{d t}=\frac{3}{25}=0.12\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$ oe - exact answer only.

Question Number	Scheme	Marks
6.	(a) (i) $\alpha+\beta=-p$ (ii) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$ $=p^{2}-2$ $\begin{aligned} \text { or } \quad & \left\{\begin{array}{l} \alpha^{2}+p \alpha+1=0 \\ \beta^{2}+p \beta+1=0 \end{array}\right. \\ & \alpha^{2}+\beta^{2}+p(\alpha+\beta)+2=0 \\ & \alpha^{2}+\beta^{2}=p^{2}-2 \end{aligned}$ $\left.\begin{array}{l} \text { (iii) } \begin{array}{rl} (\alpha+\beta)^{3}=\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3} \\ \Rightarrow \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)= & (-p)^{3}-3(-p) \end{array} \\ \quad=3 p-p^{3} \end{array} \begin{array}{ll} \alpha^{3}+p \alpha^{2}+\alpha=0 \\ \beta^{3}+p \beta^{2}+\beta=0 \end{array}\right\} \begin{aligned} & \text { alternatives } \alpha^{3}+\beta^{3}+p\left(\alpha^{2}+\beta^{2}\right)+(\alpha+\beta)=0 \mathrm{M} 1 \\ & \begin{aligned} \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) & \alpha^{3}+\beta^{3}+p\left(p^{2}-2\right)-p=0 \\ =-p\left(p^{2}-2-1\right) & \alpha^{3}+\beta^{3}=3 p-p^{3} \end{aligned} \end{aligned}$ (b) $\quad x^{2}-\left(3 p-p^{3}\right) x+1=0$	B1 M1 A1 M1 M1 A1 M1ft A1ft (8)
Notes		
Questi (a) (i) (ii) (iii) (b)	for $\alpha+\beta=-p$ or $\left(-\frac{p}{1}\right)$ $\alpha \beta=1)$ for $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$ and substituting in values for $\alpha+\beta$, and for $\left\{\begin{array}{l}\alpha^{2}+p \alpha+1=0 \\ \beta^{2}+p \beta+1=0\end{array}\right.$ $\Rightarrow \alpha^{2}+\beta^{2}+p(\alpha+\beta)+2=0$ for $\alpha^{2}+\beta^{2}=p^{2}-2$ oe (Simplification is not required for this mark) for expanding $(\alpha+\beta)^{3}=\alpha^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}+\beta^{3}$ (allow some slips in al r). Do NOT accept $(\alpha+\beta)^{3}=\alpha^{3}+\beta^{3}$ for this mark leading to $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$ fully correct for $\alpha^{3}+\beta^{3}=3 p-p^{3}$ oe (Simplification is not required for this mark) ase refer to ms for alternative methods for using $x^{2}-$ their sum $\times x+$ product ($=0$ not needed for this mark) for $x^{2}-\left(3 p-p^{3}\right) x+1=0$ (follow through their values for this mark) $=0$ must be seen with a correct equation for this mark Simplification is not required for this mark	bra for this

Question Number	Scheme		Marks	
7.		(ii) $S_{13}=\frac{13}{2}(2 a+12 d)$	B1	
	(b)	$\begin{aligned} & a+57 d=\frac{13}{2}(2 a+12 d) \\ & -12 a=21 d \\ & d=-\frac{4}{7} a \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	(c)		M1	
		$=a-100 a=-99 a$	A1	
		$t_{176}=a+175 d=a+175\left(-\frac{4}{7} a\right)$	M1	
		$=21 a-120 a=-99 a=t_{176}$	A1	
	(d)	$\begin{aligned} & a+(r-1) d=5(a+8 d) \\ & (r-1) d=4\left(-\frac{7}{4} d\right)+40 d \text { or }(r-1)\left(-\frac{4}{7} a\right)=4 a+40\left(-\frac{4}{7} a\right) \end{aligned}$	M1	
		$r-1=33 \quad$ or $\quad-4(r-1)=-132$	M1	
Notes				

Question 7(a)

(i) $\mathrm{B} 1 \quad$ for any correct expression for t_{58} (simplification not required for this mark)
(ii) B1 for any correct expression for S_{13} (simplification not required for this mark)
(b)

M1 for their $t_{58}=$ their S_{13}
A1 for collecting like terms on either side leading to $d=-\frac{4}{7} a$ cso *
This is a 'show' question so all working must be seen clearly.
(c)

M1 for an expression for t_{176} or S_{21} in either a or d
Substitution must be for the given value of d
A1 for $t_{176}=a-100 a=-99 a$ or $t_{176}=\frac{693}{4} d$ cso OR $S_{21}=21 a-120 a=-99 a$
M1 for an expression for t_{176} or S_{21} in either a or d
Substitution must be for the given value of d
A1 for $t_{176}=a-100 a=-99 a$ OR $S_{21}=21 a-120 a=-99 a=t_{176}$ or $t_{176}=S_{21}=\frac{693}{4} d$ cso with a
conclusion
Alternative
M1 for $t_{176}=S_{21}$ using 'their' expressions
A1 for correct unsimplified $t_{176}=S_{21}$
M1 for $-35 d=20 a$ oe
A1 for $d=-\frac{4}{7} a$ with a conclusion that must refer to part (b)
(d)

M1 for equating expressions for t_{r} and $5 t_{9}$ in r, a and d
M1 for an equation in r only (allow for slip ups in algebra for this mark)
A1 $r=34$ cso

Question Number	Scheme		Marks
8.	$\begin{aligned} & \text { (a) } 15+2 x-x^{2}=0 \\ & (5-x)(3+x)=0 \Rightarrow x=5, x=-3 \end{aligned}$		M1 M1 A1
	(b) $\int_{-3}^{5}\left(15+2 x-x^{2}\right) \mathrm{d} x$		M1
	$=\left[15 x+x^{2}-\frac{1}{3} x^{3}\right]_{-3}^{5}$		A1
	$=\left(75+25-\frac{125}{3}\right)-(-45+9+9)$		M1
	$=85 \frac{1}{3}$		A1
	$\begin{aligned} & \text { (c) } x+9=15+2 x-x^{2} \\ & x^{2}-x-6=0 \Rightarrow(x-3)(x+2)=0 \Rightarrow x=3, x=-2 \end{aligned}$		M1 M1 A1
	$\begin{aligned} & \text { (d) } M=85 \frac{1}{3}-\int_{-2}^{3}\left\{\left(15+2 x-x^{2}\right)-(x+9)\right\} \mathrm{d} x \\ & =85 \frac{1}{3}-\int_{-2}^{3}\left\{6+x-x^{2}\right\} \mathrm{d} x \end{aligned}$		M1
	$=85 \frac{1}{3}-\left[6 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{-2}^{3}$		A1
	$=85 \frac{1}{3}-\left\{\left(18+4 \frac{1}{2}-9\right)-\left(-12+2+\frac{8}{3}\right)\right\}$		M1
	$=85 \frac{1}{3}-20 \frac{5}{6}=64 \frac{1}{2}$		A1 (14)
	Alternative (d) $M=\int_{-3}^{-2}\left(15+2 x-x^{2}\right) \mathrm{d} x+\frac{1}{2}(7+12) 5+\int_{3}^{5}\left(15+2 x-x^{2}\right) \mathrm{d} x$	M1	
	$=\left[15 x+x^{2}-\frac{1}{3} x^{3}\right]_{-3}^{-2}+\frac{95}{2}+\left[15 x+x^{2}-\frac{1}{3} x^{3}\right]_{3}^{5}$	A1	
	$=\left(-30+4+\frac{8}{3}\right)-(-45+9+9)+47 \frac{1}{2}+\left(75+25-\frac{125}{3}\right)-(45+9-9)$	M1	
	$=3 \frac{2}{3}+47 \frac{1}{2}+13 \frac{1}{3}=64 \frac{1}{2}$	A1	

Notes

Question 8

(a)

M1 for setting $15+2 x-x^{2}=0$
M1 for solving the quadratic as far as $x=\ldots$.
A1 for $x=5, x=-3$
(b)

Ignore limits for first M1 and A1
M1 for an attempt at $\int_{-3}^{5} 15 x+2 x-x^{2} d x$ (Usual rules) ft their values of x in (a)
A1 for a fully correct integrated expression
M1 for an evaluation of their integrated expression with their limits
A1 for an area $=85 \frac{1}{3}$ or $\frac{256}{3}$ or awrt 85.33 (with a minimum of 2 dp) cso.
(c)

M1 for equating line l with curve $C\left(x+9=15+2 x-x^{2}\right)$
M1 for forming a 3TQ and attempting to solve as far as $x=$
A1 for $x=3, x=-2$
(d)

M1 for forming a COMPLETE expression of the area, either from,

$$
\begin{aligned}
\mathrm{M} & =85 \frac{1}{3}(\text { or their area in part (b) })-\int_{-2}^{3}\left\{\left(15+2 x-x^{2}\right)-(x+9)\right\} \mathrm{d} x \\
\text { or, } M & =\int_{-3}^{-2}\left(15+2 x-x^{2}\right) \mathrm{d} x+\frac{1}{2}(7+12) 5+\int_{3}^{5}\left(15+2 x-x^{2}\right) \mathrm{d} x
\end{aligned}
$$

using their limits found in (c)
A1 for correct integration of their expression for the area
dM1 for evaluating their integrated expression for the area
A1 either, $=85 \frac{1}{3}-20 \frac{5}{6}=64 \frac{1}{2}$, or $=3 \frac{2}{3}+47 \frac{1}{2}+13 \frac{1}{3}=64 \frac{1}{2}$ oe - exact answer only
NOTE: If they do not form a complete expression for the area, then M0 A0 dM0 A0

Question Number	Scheme	Marks
9.	(a) $\angle A B C=90^{\circ}$ $\begin{aligned} & \cos 30=\frac{B C}{12} \quad \text { or } \quad \sin 60=\frac{B C}{12} \\ & B C=12 \cos 30=6 \sqrt{3} \mathrm{~cm} \quad \text { or } \quad B C=12 \sin 60=6 \sqrt{3} \mathrm{~cm} \end{aligned}$	B1 M1 A1
	$\begin{aligned} & \text { (b) } \sin 30=\frac{B P}{6 \sqrt{3}} \\ & \Rightarrow B P=6 \sqrt{3} \sin 30=6 \sqrt{3} \times \frac{1}{2}=3 \sqrt{3} \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\begin{aligned} & \text { (c) } \tan 25=\frac{3 \sqrt{3}}{B F} \text { or } \tan 65=\frac{B F}{3 \sqrt{3}} \\ & \Rightarrow B F=\frac{3 \sqrt{3}}{\tan 25} \quad \text { or } \quad B F=3 \sqrt{3} \tan 65 \\ & \Rightarrow B F=11.1 \mathrm{~cm}(3 \mathrm{SF}) \end{aligned}$	M1 A1 A1
	$\begin{aligned} & \text { (d) } B D^{2}=(3 \sqrt{3} \tan 65)^{2}+(6 \sqrt{3})^{2} \text { or } D P^{2}=(3 \sqrt{3} \tan 65)^{2}+(3 \sqrt{3} \tan 60)^{2} \\ & B D=\sqrt{232.17}=15.24 \quad \text { or } \\ & \operatorname{Din} B P=\sqrt{205.2}=14.32 \\ & \sin B D=\frac{3 \sqrt{3}}{15.24} \\ & \angle B D P=19.9^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
	$\begin{gathered} \text { (e) Volume }=\frac{1}{2} \times 12 \times 3 \sqrt{3} \times(3 \sqrt{3} \tan 65) \\ =162 \tan 65^{\circ}=347 \mathrm{~cm}^{3}(3 \mathrm{SF}) \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$

Notes

Please note the stipulations on exact answers and the rounding required. Please refer to General Principles.
Question 9
(a)

B1 for $\angle A B C=90^{\circ}$, can be implied from working
M1 for any acceptable trigonometry using a complete method to find $B C$
A1 for the value $6 \sqrt{3}$ only. Do not accept any decimal value for this mark
(b)

M1 for using any acceptable trigonometry using a complete method to find $B P$
A1 for the value of $3 \sqrt{3}$ only * (this is a 'show' question, all working must be correct)
(c)

M1 for using any acceptable trigonometry using a complete method involving angles 25° or 65°
A1 for a correct expression for $B F$
A1 for $B F=11.1(\mathrm{~cm})-$ correct to 3 sf for this mark
(d)

M1 for an attempt at an expression for $B D$ or $D P$, please refer to the ms for examples - ft their values for $B C$ and $B F$, but must use $3 \sqrt{3}$ for $B P$
A1 for $B D=\sqrt{232.17}=15.24$ or $D P=\sqrt{205.2}=14.32$
M1 for using an expression of any acceptable trigonometry to find $B D P$
A1 for $\angle B D P=19.9^{\circ}$ - correct to 1dp
(e)

M1 for an expression of the volume using the given $A C(=12), B P=3 \sqrt{3}$ only, and their $B F$
A1 for $347 \mathrm{~cm}^{3}$ (correct to 3 sf)

Lengths of line in the prism for examiners

$\mathrm{AC}=\mathrm{DE}=12$
$\mathrm{AB}=\mathrm{EF}=6$
$\mathrm{BP}=3 \sqrt{3}$
$\mathrm{BF}=\mathrm{CD}=\mathrm{AE}=11.14 \ldots \ldots \ldots$.
$\mathrm{AD}=\mathrm{CE}=16.37$
$C P=9$
$\mathrm{AP}=3$
$\mathrm{BC}=\mathrm{DF}=6 \sqrt{3}$
DP $=14.32 \ldots \ldots$
$\mathrm{BD}=15.24$

Notes

(a)

M1 for an attempt at differentiation (usual rules - reducing the power of at least one term, the disappearance the constant is insufficient for this mark)
A1 for a complete correct differentiated expression
M1 for finding and using a numerical value of the gradient, derived only from using $\frac{d y}{d x}$ into either y $-13=($ their $m)(x-1)$, or by applying $y=m x+c$ including finding a value for c
A1 for any correct equation $y-13=1(x-1) \quad[y=x+12, y-x-12=0]$ etc
(b)

M1 for setting their $\frac{d y}{d x}=1$ and re-arranging to give a cubic equation ($=0$)
M1 for factorising their equation leading to three values of x
A1 for either of the correct coordinates $(-1,-5)$ or $(3,-1) \quad(x=1, y=5$ or $\quad x=3, y$ $=-1$)
A1 for both $(-1,-5)$ and $(3,-1)$ correct,$(x=1, y=5$ and $x=3, y=-1)$
(c)

M1 for finding the numerical gradient of l_{2} using their coordinates of P and Q, and attempting to form an equation using their gradient and the points P or Q
A1 for a correct equation eg $y+5=1(x+1)$ or $y+1=1(x-3) \quad[y=x-4]$
(d)

B1 please refer to ms
(e)

M1 for forming the equation of the normal at R. They must use a numerical gradient derived from their gradient of the tangent in part (a) using the rule $m_{\mathrm{t}} \times m_{n}=-1$, and use the given coordinate of $R . \quad y-13=-1(x-1)$ oe $(y=-x+14)$
M1 for finding the point of intersection of the Normal at R and l_{2}, by any acceptable method eg., simultaneous equations
A1 for the point of intersection of S, either $x=9$ and $y=5$, or gives coords $(9,5)$
M1 for using Pythagoras with point R and their S
A1 for $8 \sqrt{2}, \sqrt{128}$ oe exact answer only
(f)

M1 for any method to find the area of triangle $P Q R \mathrm{ft}$ their P and Q
A1 for area $P Q R=32$ (units ${ }^{2}$)

Notes

Question 11

(a)

B1 for $\overrightarrow{A B}=2 \mathbf{p}-2 \mathbf{q}$ or any equivalent expression
(b)

M1 for finding a vector for $B C(=3 \mathbf{p}-3 \mathbf{q})$ or $A C(=5 \mathbf{p}-5 \mathbf{q})$
A1 for $\overrightarrow{A B}=\frac{2}{3} \overrightarrow{B C}$ or $\overrightarrow{A B} \| \overrightarrow{B C}$ or $\overrightarrow{A B}=\frac{2}{5} \overrightarrow{A C}$ or $\overrightarrow{A B} \| \overrightarrow{A C}$
So A, B, C are collinear cso - there must be two correct vectors
(c)

B1 for $A B: B C=2: 3$ (oe)
(d)

First Method
M1 for forming a vector equation for either $C D, A D$, or $B D$
A1 for $k(5 \mathbf{p}-5 \mathbf{q})$ where k is either $\frac{1}{2}, \frac{3}{2}$ or $\frac{11}{10}$ for $C D, A D$, or $B D$ respectively
M1 for finding an expression for $O D$ (alternatives in ms)
A1 for $\overrightarrow{O D}=8 \frac{1}{2} \mathbf{p}-6 \frac{1}{2} \mathbf{q}$ oe
Second method
M1 for the ratio of AC: CD
A1 for $\mathrm{AC}: \mathrm{CD}=2: 1$
M1 for either component of \mathbf{p} or \mathbf{q} correct, ie., $8 \frac{1}{2} \mathbf{p}$ OR $-6 \frac{1}{2} \mathbf{q}$
A1 for a complete correct expression for , $\overrightarrow{O D}=8 \frac{1}{2} \mathbf{p}-6 \frac{1}{2} \mathbf{q}, \overrightarrow{O D}=\frac{17 \mathbf{p}-13 \mathbf{q}}{2}$, oe

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG037141 Summer 2013
 Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

